
Whitepaper: IAX2 Call Analyzer for Unsniff

Asterisk VoIP Call Analysis
Are you one of the growing number of people deploying
the Asterisk VoIP platform ? We present a add-on tool for
Unsniff Network Analyzer that performs complete VoIP
Call Analysis for the Inter Asterisk Exchange (IAX2)
protocol. Measure and plot call bandwidth, interarrival
delay, jitter, packet loss, and IAX2 events for each
direction of call. This tool like others in this series (such
as TCP/IP analysis) is written in the excellent Ruby
scripting language using the Fox-Ruby toolkit for its user
interface. Full source code of the tool is provided for you
to tweak it to your liking. If you are working with
Asterisk in any capacity, this is a "must have" tool on
your workbench.

The IAX2 Protocol
Asterisk (the open source PBX server) is rapidly gaining
in popularity as a powerful alternative to expensive PBX
systems. The IAX2 (Inter Asterisk Exchange ver 2)
protocol is the native language of Asterisk. The main
strength of IAX2 when compared to competing protocols
such as RTP/SIP/H.323 is its friendliness to NAT
(Network Address Translation) and firewalls. IAX2 uses
only a single UDP port 4569 to carry both media and
control messages.

Features
The IAX2 Call Analyzer can

• Extract all IAX call details
• Analyze the bandwidth usage
• Analyze the interarrival delay
• Analyze the jitter experienced
• Plot all IAX2 events

Extract calls from a capture file
If the IAX2 Analyzer sees a “ NEW” control message and
a corresponding “ ACCEPT” message, it assumes a call
has been set up and creates a new call. The data associated
with each call is extracted from these two messages and
shown in a table. You can then double click any call in
the table to analyze that call.

For each call the following data is shown.
Data Item Description
From IP , To IP , Source
Call Number, Dest Call
Number

These four attributes are
used to uniquely identify a
call.

Start Time When was the call started ?
This corresponds to the time
when the ACCEPT message
was seen.

Duration Seconds How long was the call in
progress ? This is the time
difference between the IAX
Control HANGUP message
and the call start time.

Codec What codec was used for the
call ?

1

This whitepaper presents a call analyzer for the IAX2 protocol. Learn how you can use this tool to draw
bandwidth, delay, jitter charts for a VoIP network that uses this protocol.

Illustration 1: Call List

Whitepaper: IAX2 Call Analyzer for Unsniff

Data Item Description
Calling number The number or extension of

the calling phone
Calling name The name of the calling

phone
Called number The number or extension of

the called phone (maybe a
SIP URI)

DNID The dialled number ID
Username The user who made the call

Table 1: Call properties

Call Bandwidth Chart
One of the most important factors that needs to be
considered while deploying a VoIP system is the
bandwidth requirements. The bandwidth at your disposal
will help you plan tradeoffs on voice quality by selecting
the right codec. Each codec has a specific voice stream
bandwidth. For example G.711 generates a packetized
voice stream of 64kbps bandwidth. However, the actual
bandwidth required is larger due to the IP/UDP/IAX2
headers. The call bandwidth chart plots the actual
bandwidth usage of the selected call.

The methodology used by the bandwidth analyzer is:

Use entire packet size including Ethernet/ IP/ UDP/
IAX2 headers: The entire packet size is used to calculate
the bandwidth requirements. As an example, if we are
analyzing a call which uses the GSM codec, the total
payload is calculated as: Total payload = 33 (GSM) + 4
(IAX2) + 8 (UDP) + 20 (IP) + 14 (Ethernet) = 79 bytes
You can compare your bandwidth utilization with the
specifications different codecs at
http://www.openh323.org/docs/bandwidth.html

Sample used bandwidth every 200 ms: We use a 200ms
sample rate of used bandwidth to plot. If you wish to use a
more granular sample, then you can change the line
@sliceus = 200000 line in the iax2ana.rb script.

In the picture below we can see that the call uses the iLBC
codec and the used bandwidth is around 35kbps in each
direction. You can play with this tool for other codecs
such as G.711, GSM, Speex and verify for yourself the
bandwidth usage claims of each of these codecs.

One-way delay (Latency)
When you talk into a microphone,the first thing that
happens is the sampling of your voice (often at 8000 times
per second). The one-way delay is the time between the
sampling of a voice signal and the playout of the sample
at the other end. This includes codec delays, network
buffering, transmission delays, and playout buffering.
While all these factors are important to determining the
overall voice quality, the transmission delay is the largest
and most unpredictable component. Even casual users of
voice over IP services would have noticed that as latency
gets longer, it becomes much harder to carry out a
meaningful conversation. The well accepted benchmark
for maximum one-way delay is 150ms (ITU-T G.411).
Unfortunately, measuring one-way delay is not easy. For
starters, we need timestamp synchronization between the
two endpoints and a way to carry this information in each
packet. This is too much to ask in a loosely controlled
network such as the internet. So what we are really saying
is, Unsniff cannot calculate the one-way delay. Luckily it
turns out the inter-arrival delay (next section) is a pretty
good indicator as well of voice quality. Unsniff can
calculate the inter-arrival delay and plot them on a chart
for the duration of the call. So lets accept that one-way
delay calculation will remain an elusive goal for us and
move on to the next section !

Interarrival Delay
In the previous section, we saw that measuring one-way
delay is not possible given our constraints. Let us now
focus on the next best thing, the inter-arrival delay.

What is Interarrival delay ?
Assume a VoIP transmitter is sending voice packets
exactly 20ms apart, so they keep shooting out of the
sender at 0ms, 20ms, 40ms, tick,tick,tick,tick, . In an ideal
situation the receiver must also receive these packets
exactly 20ms apart (at t+0ms, t+20ms, t+40ms) and so
forth. Actually this is what happens in traditional phone
systems. Unfortunately in an IP network, this not the case.
While we can easily arrange the sender to transmit packets
at exactly 20ms intervals, we cant "arrange" for them to
be received at exactly the same rate. This is due to the
routers and the packet switched network in between. So
we may have a case where the receiver gets the packets at

2

Illustration 2: Call Bandwidth Chart

Whitepaper: IAX2 Call Analyzer for Unsniff

(t+0, t+23, t+45, t+61, etc). This means that instead of
arriving nicely at 20ms intervals, we get packets at 23ms,
22ms, and 16ms intervals. Since the actual numbers
(23ms, 22ms, 16ms above) are dependent on the transmit
rate (20ms), we define interarrival delay as the difference
between the two. In this case we have interarrival delays
of 3ms for the 1st packet, 2ms for the 2nd packet, -4ms
for the 3rd packet. We also do not care about the sign. So
we have delays of 3ms, 2ms, 4ms in the above example.
This is how interarrival delay is calculated. This is also
sometimes misleadingly referred to as simply “ delay” .

Calculating interarrival delay for IAX2
The two measurement points required to calculate delay
are the received time and the transmit time.
Received Time
The received time is when the packet was captured by
Unsniff. Getting this is not a problem because Unsniff
gets a microsecond resolution timestamp for each
captured packet from its provider (Winpcap or Windows
Raw Sockets). The only tricky part it to position Unsniff
close to the receiver if we want a reasonably accurate
measurement. Ok next..
Transmit Time
This is when a packet was transmitted. Unsniff does not
have access to this information because it is only running
near the receiver. You could probably run another
instance of Unsniff near the sender and correlate two
packets by writing simple scripts. This is not feasible in a
number of situations because we may not have access to
both ends of the call. So what do we do ? The timestamp
carried in each IAX2 packet comes to our rescue. This
timestamp is the number of milliseconds since the call
began. We can use this timestamp because we are only
interested in the time difference not the actual time. All
we have to do is convert the microsecond resolution timer
at the receive side to milliseconds and we have our
measurements.

Jitter (statistical variation of Interarrival Delay)
Within bounds, interarrival delay can be easily controlled
by adding a buffer. Sometimes interarrival delays are not
problem at all because they are uniform. Let us consider
an example : If at a receiver packets arrive at (t+0, t+22,
t+40, t+62, t+80), we can see that the delays are +2ms,
-2ms, +2ms, -2ms and so on. So you can just add a buffer
for a single packet and still play it out with no problems,
except that you have now introduced some additional
delay due to the buffer. The real problem happens when
these interarrival delays vary. This interarrival delay
variation is known as the jitter (a term borrowed from
electronics).

The jitter is quite a good indicator of voice quality.
However, it does not mean much at a single point of time.
So, if someone walks up to you and says “ My call
experienced a jitter of 8.3ms at 10:42:22 AM ” . You will
not know what to say about the voice quality at that
instant. You can use jitter to compare different calls or
compare time periods of the same call. If the same person
walks up to you and says, “ My call experienced high jitter
(between 7ms and 8ms) for a few minutes at 10:42:22AM
compared to the beginning of the call (between 0ms and
2ms)” . You can conclude that the voice quality during the
phase of high jitter was lower than during the period of
low jitter.

Calculating jitter for IAX2Jitter Chart for IAX2
The IAX2 informational draft does not include a formula
for calculating jitter from interarrival delay samples. So
we stole one from RFC3550 (RTP - A transport protocol
for real time applications) - the predominant VoIP
protocol. We think that the formula is valid for both RTP
and IAX2.

The formula is :
Jitter (at time T) = Jitter (at time T-1) +
(Interarrival Delay(at time T) - Jitter (at time T-1)) x 1/16

3

Illustration 3: Interarrival delay

Illustration 4: Jitter (both directions of call)

Whitepaper: IAX2 Call Analyzer for Unsniff

So the jitter is calculated continuously over the duration of
the call. You may ask , What is the mutliplier "1/16"
doing up there in the formula ? It is the “ gain parameter” .
Here is what RFC3550 has to say about the 1/16 factor.
"This algorithm is the optimal first-order estimator and
the gain parameter 1/16 gives a good noise reduction ratio
while maintaining a reasonable rate of convergence."

IAX2 Events
We have looked at call bandwidth, interarrival delay, and
jitter charts for voice over the IAX2 protocol. While all
these give you an idea of the quality of the call. You still
want to see how the IAX2 protocol itself works over the
time period of a single call:

• what messages are sent at what points in time ?
• when was the call setup / call hung up
• were there any DTMF digits transmitted
• was the call transferred
• IAX2 control messages (PING/PONG/LAG/etc)
• how many mini frames vs full voice frames

Notation What it means
White Dots along top around
the 55 mark

IAX2 Mini Frames
containing voice samples
from initiator of call

Yellow Dots along top
around the 45 mark

IAX2 Mini Frames
containing voice samples
from receiver of call

N NEW
> PING
R Registration messages
< PONG
V - yellow Full frame containing voice
+ ACK

DTMF digit pressed
any RED color Retransmitted packet
A Accept
L Lag messages (LAGRQ and

LAGRP)
O Other IAX Control message
* RINGING
@ ANSWER
U Other Control message

Table 2: IAX2 Events Symbols

How to Download and run this tool

Availability
Free download from the Unleash Networks Website at
http://www.unleashnetworks.com/articles/asterisk-call-
analyzer-for-iax2.html

1. Install Unsniff Network Analyzer and Ruby
2. Download iax2ana.rb (the IAX2 Call Analyzer

Ruby Script) and UnleashCharts.rb

How to run ?
• Capture some IAX2 packets from the network

under test
• Run iax2ana.rb on the captured file
• Double click on a call to analyze

Usage:
iax2ana <capture-file-name>
Where:
capture-file-name : Capture file in Unsniff (*.usnf) format

Example:
c:\RubyTest>iax2ana.rb AstrCap.usnf

Copyright © 2006, Unleash Networks Pvt Ltd. All rights
reserved. All trademarks are property of their respective owners.
All specifications are subject to change without notice. Unleash
Networks assumes no responsibility for any inaccuracies in this
document or for any obligation to update information in this
document. Unleash Networks reserves the right to change,
transfer, or otherwise revise this publication without notice.

http://www.unleashnetworks.com
Author: Vivek Rajagopalan (Unleash Networks)
vivek@unleashnetworks.com

4

Illustration 5: IAX2 Events

http://www.unleashnetworks.com/articles/asterisk-call-analyzer-for-iax2.html
http://www.unleashnetworks.com/articles/asterisk-call-analyzer-for-iax2.html

